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Functional integrals in Brownian motion 
G. J. PAPADOPOULOS 
Department of Mathematics, University of Leeds 
Communicated by S. F. Edwards; MS. received 21st February 1968 

Abstract. The functional calculus is employed systematically for the development 
of the theory of Brownian motion. A simple method to obtain the Smoluchowski 
integral equation is devised. This equation forms the basis for the derivation of 
conditional functional integral representations over phase-space, momentum- and 
configuration-space functions of the phase-space conditional probability distribution. 
A functional steepest-descent method is employed for an approximate evaluation of 
the conditional probability distribution of the momenta. 

1. Introduction 
Particles in a liquid environment continuously suffer collisions, at random, from the 

molecules of the surrounding medium, due to the thermal agitation of the latter (Einstein 
1956). As a result of the thermal kicks, a particle of approximately colloidal size is con- 
tinuously executing an irregular random walk (kinks) ; we say that it executes Brownian 
motion or simply that it is a Brownian particle. 

Langevin postulated the following equations of motion for the Brownian particle : 

dP - = - Bp + F(r , p, T )  + f(7) 
dT 

dr 
p = m--. 

dT 

(1.la) 

( l . lb)  

B-l  is a 3 x 3 relaxation time matrix, which is symmetric, positive definite and depends 
on the viscous properties of the medium and the geometry of the particle (see, e.g., Landau 
and Lifshitz (1959). The  orientation dependence will be considered averaged. - Bp is 
the Stokes resistance of the medium to the particle. F(r, p, T )  is the external force on the 
particle, assumed to be slowly varying and containing no memory. f(T) is the force of 
collisions, assumed random and independent of the kinetic state of the particle. f(T) is 
also uncorrelated to its previous values. The  linear dependence of the medium resistance 
on the particle momentum (Stokes law) is adequately correct for quasi-static motion. I n  
general, the resistance contains a memory term. An example of this sort appears in Landau 
and Lifshitz (1959). However, the results based on the Stokes resistance show good agree- 
ment with experiment, as demonstrated by Perrin (1916). The  forces -Bp and F are 
called systematic, while the force f(7) is a thermal or collision force. 

The  motion of the Brownian particle cannot be studied deterministically owing to 
insufficient knowledge of the thermal force. Even if f(T) were known in detail, the rapidity 
and randomness of the kinks would render the task of following the particle motion 
impossible. Thus the need to recourse to a statistical treatment. What we need in this 
approach is the distribution of the thermal force. With the aid of this distribution we can 
obtain the distribution of the dynamic variables r, p, using their equations of motion 
( l . la ,  b). Chandrasekhar (1943) assumed that in a short interval of time, in which a small 
change in p and r occurs, but a considerable number of collisions takes place, the probability 
distribution for f(7) is Gaussian. Owing to the independence of the thermal force on its 
previous history, the distribution of f i n  successive short time intervals is the product of 
the distributions for these intervals. With this distribution and the solutions of the equa- 
tions of motion written in finite difference form as regards the part involving f(T), 
Chandrasekhar obtained the distribution of r, p after letting the short time intervals go to 
zero. In  actual fact, Chandrasekhar was using integration in the function space of the 
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thermal force without explicitly stating it. The  problems relevant to our work treated 
there were the case of the free Brownian particle (i.e. external force equal to zero) and the 
case of the harmonically bound particle. The  friction coefficient mB was taken as a scalar 
and constant. 

In  this work we generalize and systematize Chandrasekhar’s original method by integra- 
tion in the function space of the thermal force. We proceed further to develop expressions 
for the distribution functions of r, p as configuration-, momentum- and phase-space 
functional integrals. During the completion of this work, we found that Onsager and 
Machlup (1953) obtained similar expressions for particular cases. Reference will be made 
to these cases later in the text. 

The  problem we treat here is: given a functional distribution for the thermal force 
f(T) over a time interval [t’, t ) ,  we require the distribution for the position r and momentum 
p of the particle at time t ,  given that at an earlier time t’ the particle occupied the phase 
point (r’, p’). We make the stochastic assumption that the functional distribution of the 
thermal force over [t’, t )  is the following continual Gaussian distribution: 

The  summation convention from 1 to 3 will be assumed for repeated indices throughout 
this text. g is a positive definite symmetric matrix. It can be further specified so that, for 
a free Brownian particle (i.e. F = 0), the distribution of the momentum after infinite time 
goes over to the Maxwellian distribution : 

Alternatively, we demand that the equation governing the distribution of the particle 
momentum admits (1.3) as a solution in the case F = 0. The matrix g, thus determined, is 

g-’ = ~ K T ~ B .  (1 *4) 
This was done in an earlier work by the author (Papadopoulos 1967, to be referred to as I). 

One may consider the functional distribution (1.2) as the distribution of the collision 
forces f(T) acting on the particles of an ensemble of identical Brownian particles, for all 
T E [t’, t ) .  It is easy to deduce that the thermal forces at two different times are not corre- 
lated. This fact, together with the non-existence of memory terms in the equations of 
motion for r and p secure the Markovicity of these variables. 

The  statistical description of the Brownian motion is effected through the ensemble 
average conditional probability distribution (ECPD) G(p/p’, rlr’ ; tit’), t > t’, of finding 
the particle in the vicinity of the phase point (r, p) at time t ,  if at an earlier time t‘ it occupied 
the phase point (r’, p’). I t  is our object in the subsequent sections to develop techniques 
for obtaining the ECPD. 

In  9 2 following Edwards (1964) we obtain the ECPD G as a functional average of the 
corresponding conditional probability distribution (CPD) in the deterministic (or Liouville) 
sense. The  method is exemplified by (a)  calculating the ECPD when the external force 
is a prescribed function of time and (b )  by finding the same distribution in the general case, 
when the external force F = F(p, r, T ) ,  but for t-t‘ very short. 

In  5 3, exploiting the method for the construction of the ECPD G, we devise a simple 
method to show that G obeys the Kolmogorov-Chapman (or otherwise Smoluchowski) 
integral equation. This property is usually assumed. Also we show that G is a Green 
function of the Fokker-Planck equation. 

Section 4 deals with formal representations of G as conditional functional integrals in 
momentum, configuration and phase spaces. 

Finally, in $ 5 ,  we deal with an approximation method analogous to the WKB approxi- 
mation. Considering the case where F = F(p, T )  and employing the functional integral 
expressions over momentum functions, we obtain a compact approximate expression for 
the ECPD of the momentum. In the case where the external force is a function of time 
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and linearly dependent on the momentum, the method yields exact results. Onsager and 
Machlup used this method with zero external force and obtained an exact expression 
for the exponential factor of the probability. In  the general case of F(p, r, 7) the complete 
expression obtained by this method involves another factor dependent on r, p. We have 
calculated this factor in the case F = F(p, T ) .  We believe that this calculation demonstrates 
the power of functional techniques to reach results, which otherwise are difficult of access. 

2. Construction of the ECPD G(rlr’, P I P ’ ;  tit’) 
In I under certain restrictions we introduced the method for the construction of the 

ECPD in momentum space. We wish now to extend the construction in phase space. Let 

R(t) = Wr’, p’, [ftft(7)1), P(t> = P(r’, p’, [ft.“(.)l) (2-1) 

be the solution of equations ( le la ,  b), which satisfy the initial condition 

R(t’) = r’, P(t’) = p’. (2.2) 

The  deterministic CPD of finding the particle in the vicinity of the phase point (r, p) at 
time t ,  if at an earlier time t’ the particle occupied the phase point (r’, p’) is given by 

6{r-R(r’, p’, [ft.“(.)l)} x q p -  P(r’, p’, [ftWI)}. (2.3) 

The  ECPD is obtained as the functional average of the deterministic CPD over the func- 
tional thermal force distribution. We have 

G(rlr’, p’p’; tlt’) = j” 6{r-R(t))6{p- P(t)}W[f1”(T)] n df(7). (2.4) 
t ‘ $ Z < t  

In the following, we shall give a few explicit calculations of G using formula (2.4). 
We shall make use of the following functional integration formula: 

= [der {T f, K(r)  dr]]-”’ exp [ - 53 { K(T)  d ~ ) - ’  X.‘Xs’] (2.5) 

where X(l), X(,) are three-dimensional vectors and Q(l), Q(2) are 3 x 3 matrices. K is the 
6 x 6 matrix given in partitioned form (see appendix of I): 

7 , s  =1 t’ 7s 

and 

@ j )  stands for the transpose of Q‘i). 
(i) As a first example, we consider a Brownian particle under the influence of a time- 

prescribed force F(T). We shall also take the relaxation time matrix B constant, as this is 
the usual case in applications. In  this case the Langevin equations are 

- - Bp + F(7) + f(7) 
dP _ -  
dr  

dr 
p = m-. 

dr 
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The solution of (2.6) satisfying R(t’) = r’, P(t’)  = p’ is given by 

t 
R(t) = V +  m-lB-l[I-exp{-B(t-r)}] f (r)dr  

t’ 
r t  

( 2 . 7 ~ )  
P ( t )  = v+ J exp{-B(t-r)}f(r)dr 

t‘ 
where 

V = r ’ + m - lB- [I - exp{ - B( t - t ’)}]p‘ + m - lB- f , [ I -  exp{ - B(t - r)}]F(r) dr 

v = exp{ - B(t - t’)}p’ + exp{ - B(t - r)}F(r) dr. 

I stands for the 3 x 3 unit matrix. Employing formula (2.4), we obtain for the ECPD in 
phase space the result 

(2.7b) s:. 
t 

G(rk’,p/p’;  tit') = I S ( r - V -  m-lB-l[I-exp{-B(t-r)}] f (r)  dr) 
t’ 

r r t  1 

x 6  k - v -  J t’ exp{-B(t-r)}f(7)dr] 

A‘1) = 4 ~ T m -  lB- l[(t - t ’) - $B.- + 2B-1 exp{ - B(t - t ’)} - +B- exp( - 2B(t - t ’)}I 
A(2) = ~ K T B -  ’[$ - exp{ - B(t - t’)} + +exp{ - 2B( t - t’)}] 

A(3) = 4~Tm[& - + exp{ - 2B(t - t’)}]. 

Since B is symmetric and the matrices A(1), A(2)  and A(3) can be analysed in power series 
of B, it follows that these matrices are also symmetric. Furthermore, they commute. y is 
a six-dimensional phase vector with components 

ya  = Y,- V,  (E = 1 , 2 , 3 )  and yBff  = pj-u, ( j  = 1 , 2 , 3 ) .  (2.8b) 
We have made use of the relation 8-l = ~ K T ~ B .  Formula (2.8) as it stands is not con- 
venient for calculations. It is possible to express the determinant and the inverse of the 
6 x 6 partitioned matrix involved in a convenient manner. We observe that 

( 2 . 8 ~ )  

where we have used the commutativity of the matrices A(i) ( j  = 1 ,  2, 3 ) .  From (2.9) we 
obtain 

(A‘1) 8’2’) - l  = (A‘ 3) { A(1)AW - (A(2))2}- 1 ,  - AW{A(l)A(3) - (A(2))2}-1 
A‘2’ A‘3’ - AW{A(l)A(3) - (A(2))2}- 1, A(l){AWA(3) - (A(2))2)- 1 ) * (2.9a) 

In (2.9a) we have managed to express the inverse of the 6 x 6 partitioned matrix on the 
left-hand side in terms of the inverse of the 3 x 3 matrix A(1)A(3)- (A(2))2.  From (2.8~) 
we have 

A(1)A(3)-(A(2))2 = ( 4 ~ T ) ~ B - l [ ’ ( t -  t ’ )+ZB-l  exp{-B(t-t’)} 

- {$B- + &( t - t ’)} exp{ - 2B( t - t ’)}I. (2.9b) 
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The 3 x 3 matrices on the right-hand side of (2.9a) are functions of the matrix B. Let U$ 
introduce the notation 

Q‘J’( B )  = A‘j’( B )  [A‘”( B)AI‘~’( B )  - {A‘2’( B)}2] - ( 2 . 9 ~ )  

If we let S be a similarity matrix corresponding to B ,  i.e. 

SBS-’ = D (2.9d 

where D is a diagonal matrix (its diagonal elements being the eigenvalues of B in some 
order), we have 

(2. 9e:i 

~ ( ~ ’ ( 0 )  is diagonal and therefore the inversion involved in (2.9~) is quite simple, and u e  
shall not pursue the calculation of the 9 ’s  any more. From (2.9), by observing that the 
determinants of each of the matrices on the left-hand side are equal, we find that 

‘p(3)(B) = S-1Sy(3j(B)S-1S = 8 - 1  ‘2 ( 3 )  

The right-hand side of (2.9f) is easily calculable once the eigenvalues of the matrix B 
are known. Now from (2.8) and (2.9a, c, e , f )  we find for the ECPD the result 

G(r ir’, P I P ’ ;  tit’) = { ~ ~ ~ ( T ~ [ A ( ~ ) ( D ) A ( ’ ) ( D )  - {A(2)(D)}2]))-1’2 

x exp[ - {9‘”(B>)aa(~a - VdrL? - Vo) - 2{Y(2)(B)lu/3(ra - V a ) ( P ,  - 2.4) 

- {9(3)(B)lao(Pa - %>(Po - .o)l* (2.10) 

Formula (2.10) is a generalization of a result due to Chandrasekhar (1943) for the free 
Brownian particle with scalar relaxation time. Our formula takes account of a time- 
prescribed systematic force and matrix relaxation time. We shall not dwell here on the 
asymptotic form taken by (2.10) for t - t‘ $ B - l .  

(ii) We now wish to find the ECPD G(rIr’, pip’; t+Atlt) of finding the particle at 
time t+ At in the vicinity of the phase point (r ,  p) given that at an earlier time t the particle 
occupied the phase point (r’, p’). The time At is taken short enough so that the systematic 
forces do not change appreciably. However, the collision force in this time interval under- 
goes large variations. 

From the Langevin equations (1. l a ,  b )  we obtain for 

R(t )  = r’ and P(t) = p’ 

p ( ~ )  d~ r‘+m-lp‘At (2.11a) 

s’ I”: f ( T )  dT 

l+”‘ R(t  + At) = r’ + m - l  

t + A t  

t 
P(t+At) = p’+ I’ [ - BP(7) + F{r(7), P(.>, 4 1  d7- + 

t 

= p’ + { - Bp + F(r’, p’, t)>At + s ’ + A i f ( T ) d T  (2.1 lb) 
t 

where we have replaced the time integral of the systematic forces by the first non-vanishing 
term of its Taylor expansion. This is done on account of the small variation of the system- 
atic forces. We cannot do this for the thermal force owing to its rapid variation. We remark 
that for short-time intervals the displacement of the Brownian particle does not depend 
explicitly on the collision force. 

G(r/r’,plp‘; t + A t / t )  = 8{r-R(t+At))$8{p-P(t+At)}W[f,.t(~)] df(7). (2.12) 

Employing (2.4) for the construction of the ECPD we have 

t < i < t + d t  
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The functional integral in (2.12) is given by (11.9) in I if one replaces F(p’, t) by F(r’, p’, t )  
since the presence of r’ in F does not affect the functional dependence of P(t + At) on f(7). 
We have 

G(rlr’, P I P ’ ;  tit’) = ~3(r-r’-m-~p’At)[det{.ir”~(t)At}]-’’~ 

x ( q + B ( t ) p ’ - F ( r ’ , p ’ ,  t ) )  5 At) (2.13) 

introducing the transformation 

r‘ = r-Ar‘, p’ = p-Ap’. (2.14) 

Formula (2.13) takes the form of a function T(r- Ar‘, p-Ap’; Ar’, Ap’) and represents 
the transition probability density for the particle occupying the phase point (r - Ar‘, 
p - Ap’) at time t to change phase position by (Ar’, Ap’) in the short time At. For later 
reference, we shall find the transition probability distribution for the particle to move 
from the phase point (r, p) at time t to (Ar, Ap) in the short time At .  This is readily obtained 
from (2.13) as 

T(r, p; Ar ,  Ap) = 8{Ar - m-1pAt)[det{7Tg-1(t)At)]-1’2 

The following averages defined by 
(2.15) 

3. The Smoluchowski and Fokker-Planck equations 

Chapman) integral equation, i.e. for t’ < t, < t ,  
We wish to show that the ECPD defined in (2.4) obeys the Smoluchowski (Kolmogorov- 

where 
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= J V-R( r1 ,  P1, [ft,“(.>l))S{P- P(r1, P1, [ft,“<.)I)) (3.3) 

x qr,  -R(r’, p’, [ft,t+)]))qpl- P@’, p’, [ft,”(7-)])) 4 4%. 
The thermal distribution (1.3) factorizes for any pair of disjoint subintervals covering 
[t’, t], i.e. 

Multiplying (3.3) and (3.4) by members and integrating both sides over all f(T), TE[t’, t] 
we obtain, using (2.4) for the ECPD, the Smoluchowski integral equation (3.1). I t  must 
be noted that, if the Langevin equations of motion contain memory or the thermal distribu- 
tion does not factorize, then the Smoluchowski integral equation does not apply. 

The  Smoluchowski integral equation forms the basis for all calculations of Brownian 
motion. We shall derive from this equation for the ECPD-the Fokker-Planck equation. 
Let us replace t, by t and t by t+At in (3.1) and introduce the transformation (2.14). 
Then using (2.13) we obtain 

W[fyt(T)] = W[fy‘l(T)] . W[filt(T)]. (3.4) 

G(rlr’,p]p’; t+At[t’) = T(r-Ar,p-Ap; Ar ,  Ap) 
x G(r-ArIr’,p-Ap/p’; tit') d(Ar)d(Ap). (3.5) 

The  Fokker-Planck equation for the probability distribution @(r, p ;  t) is obtained from 
the same integral equation ( 3 4 ,  i.e. 

@(r,p; t + A t )  = [ T(r-Ar,p-Ap;Ar,Ap)@(r-Ar,p-Ap; t)d(Ar)d(Ap) (3.52) 

(see e.g. Chandrasekhar 1943). Expanding the left-hand side of (3 .5~)  in power series of 
At and the right-hand side in power series of AY,, Apt( by Taylor’s theorem and making 
some rearrangements, we have 

where Q and T denote the functions @(r, p;  t) and T(r, p ;  Ar ,  Ap). Using in (3.6) the 
averages obtained in (2.17), dividing both sides by At and passing to the limit as At -+ 0, 
we obtain the partial differential equation 

This is the Fokker-Planck equation in phase space. In  I we established for g the expression 
g-l  = 41cTmB. By considering the case where the friction matrix m-IB is zero (i.e. when 
the particle does not dissipate energy to the environment) the resulting equation is Liouville’s 
equation. The  Fokker-Planck equation is a generalization of Liouville’s equation to 
include dissipation phenomena. 

Since for t > t’ the ECPD G satisfies (3.5a), it follows that, for t > t’, G defined in 
(2.4) is a solution of the Fokker-Planck equation (3.7). Furthermore, from (2.13) it is 
easy to see that as At --f 0 (changing t to t’ and t + At to t) 

G(rlr’, pip’; tit’) + S(r -r’)S(p -p’) 
as t +t’+O. 
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Since G satisfies the Fokker-Planck equation and property (3.8), it follows that it is a 
Green function of the Fokker-Planck equation. Furthermore, G has the property to 
propagate the solutions of the Fokker-Planck equation in phase space. In  other words, if 
O(r, p ;  t’) is the phase distribution at time t’, the distribution O(r, p ;  t )  at a later time 
t > t’, which obeys the Fokker-Planck equation and the same boundary conditions with 
respect to r, p as G, is given by 

O(r, p; t)  = G(rlr’,plp’; tlt’)O(r’, p’; t’) dr’ dp’. (3.9) 

This is the propagation equation. O in (3.9) satisfies the Fokker-Planck equation since 
G with respect to r, p ;  t does so. The  same applies for the boundary conditions. The  
initial condition requirement follows from (3.8) since 

O(r, p; t) + r 8(r-rf)8(p-p’)O(r’, p’; t’) dr’ dp’ = @(r, p; t’)  

as t +t’+O. 

(3.10‘ 

4. The ECPD G(r!r’, P I P ’ ;  tlt’) as a conditional functional integral 
In  I we produced a conditional functional integral over momentum-space functions 

for the Green function G(p/p’ ; tit’). We wish now to consider the general case of the phase- 
space conditional probability distribution G(r lr’, plp’ ; tlt’) as a conditional functional 
integral over CI, phase-space functions, p, momentum-space functions and y ,  configuration- 
space functions. 

Let us at first consider a fine subdivision of the interval [t’, t]: 

with 
to = t‘ < t ,  < t, < ... < t, = t .  

We define At, = t,, , - tj. Repeated application of Smoluchowski’s integral equation (3.1) 
gives 

W r f ,  p/p’; t i t f> = G(rirN-l, pipN-,; P ~ - , I P ~ - ~ ;  t,v-l~tN-2) ... 

x G(f,2~f,1,P,IP1; ~ * ~ t l ~ ~ ~ ~ l ~ r ’ ~ P l l P ’ ;  ~11t’)drN-l dPX-1 ‘ a .  dtl dP1. 
(4.1) 

If we employ formula (2.13) for the ECPD between two neighbouring times, 

G(r,+llrj, p i+l[pj ;  tj+lltj) E 6(rj+l - r j -m- Ip iAt i>  . [det(7rgg-1(ti)Ati}]-1!2 

(4.2) 

This gives the probability distribution for the Brownian particle starting from the phase 
point (rJ, pi) at time tj to find itself in the vicinity of the phase point (r,+l, pi+,) at a 
neighbouring later time t j t l .  Substituting (4.2) into (4.1), repeatedly, we obtain for the 
ECPD 
G(rlr’,plp’; tit’) 1: G(N)(rlr’,p!p’; tlt’) 

N - 1  - 1/2 
= [ [ n det{rg-’(tj)Atj}] 

j = O  
N - 1  

xexP { -  2 gaO(ti) ( ~ p 2 + B ( t j ) p j - F ( r j , p j ,  Pi+1 ti)) 
i = O  ‘ a  
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N 

x ~ ( ~ N - ~ N P N - P )  n drj d ~ j *  (4.3) 
j = O  

Taking finer and finer subdivisions of the interval [t’, t]  and passing to the limit as N +CO, 
provided the maximum subinterval for the N t h  subdivision max At“) --f 0 as N -+ 03, 

we have G“) -+ G. 
The  limit G ( N )  as N --f CO with max At”) --f 0 is a conditional functional integral 

in the space of all functions (r(T), p (~ ) )  defined over [t’, t ] .  We find it natural to adopt 
the following notation for this functional integral : 

- 112 
G(rlr’, plp’; tit’) = n det{z-g-l(~) h}] 

t ’ S  r < t  

(4.4) 

We wish now to express G(rIr’, pip’; tlt’) as a conditional functional integral over 
momentum functions. T o  do this we integrate in (4.3) over all r, ( j  = 0, 1,2, ..., N )  and 
obtain 

6““) = [ n det{z-g-’(tj)8tj}] 
N - 1  - 1!2 

j = O  

N 

j = O  

N - 1  

r - r ‘ -  2 m-lpjAtj 6(po-p‘)6(pN-p) n dp,. 
j = O  

(4.5) 

Again in the limit as N -+ 00 with the usual proviso (max At“) + 0) we obtain a conditional 
functional integral over all momentum functions p(T)l[t’, t ]  with p(t’) = p‘ and p(t) = p. 
This is another formal expression for the Green function of the Fokker-Planck equation. 
The  notation we adopt here is 

I G(r[r’, pip', tlt‘) = n det{z-g-’(T) d ~ }  
t ’ 4 7 < t  

x6(r - r ’ -  f m-1p(r)d~)S(p(t’)-p’}6{p(t)-p} fl dp(7). (4.6) 
t’ t’4zct 
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Finally we wish to find a conditional functional integral over all configuration functions 
r(T)I[t’, t] with r(t’) = r ’  and r ( t )  = r to represent the phase-space ECPD. We integrate 
now over all p, ( j  = 0 ,  1, 2, ..., N )  in (4.3) and obtain 

112 

de t (n - Im- ‘g( t3)At,}] 

rji-1 -r, - F  r , , m  i At, 

ri+1 r,+1-r, A t j - l - F  r j ,  m 
At, 1 ( At, 

n dr,. _- x 6  p-?n ( At, i = O  
(4.7) 

l h e  change in the normalization factor of (4.7) is due to the integrations over the p3, 
which appear in the 6 functions of (4.3). The  introduction of the new variable of integration 
rN+l is to ensure the condition p(t) = p. Again passing to the limit as N + CO with 
max At(”) + 0, we have a conditional functional integral over all configuration functions 
r(T)l[t’, t ]  with r(t’) = r’, r(t)  = r representing the ECPD in phase space. The notation 
we use to represent G through the above limiting process is 

G( r l r ’ ,  pip'; tlt‘) = n det{n-1m-2g(T) dT} 
t ’ < T < t  

m 3  
x [mr(T) - F(r(T), mf(T), T> + B(T)mf(T)]fl dr 

x 6{r(t’) -r’)6{p’-mk(t’))6{r(t) -r)8(p-mf(t))  (%) n dr (7 ) .  
t ’ < Z < t + O  

(4.8) 
The  dots upon r in (4.8) denote as usual differentiation with respect to T .  t+O under 

the product symbol stands for the extra variable of integration in the limiting process. 
I t  is worth noting that the quantity in the square brackets of the exponential function 

in (4.8) is the left-hand side of the Langevin equation in terms of r if on the right-hand 
side we have only the thermal force. Similar remarks apply to the exponential expressions 
in the functional integrals (4.4) and (4.6). 

I t  is interesting to note that one could obtain the result (4.8) from the functional integral 
(2.4) over all collision force functions by change of the variable of integration through the 
Langevin equation (1.1) after eliminating p ( ~ )  through (1.2). But there is a point to which 
attention should be drawn in transformations involving continuous functionals, that of 
the Jacobian of the transformation. The  Jacobian is obtained by going over to the discrete 
case and then passing to the limit of continuality. It so happens that the various ways of 
approximating continuous functionals by discrete ones yield in general different Jacobians. t 
i I am grateful t o  Professor S. F. Edwards for drawing my attention to this peculiarity. 
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Mathematically one obtains unique results for the Green function, as far as the normalization 
factor is consistent with the approximating expressions employed. In  our definitions of 
the functional integrals (4.4), (4.6) and (4.8) we have chosen the approximating expressions 
indicated in (4.3), (4.5) and (4.7) for two reasons: mathematical simplicity, and for a 
physical reason which is related to causality as follows. 

For instance, in the approximate expression (4.3) for the Green functionG theright-hand 
side is built up from Green functions connecting the neighbouring times ti, t,+ (tj+ > t3). 
These Green functions when chosen as in (4.2) multiplied by 8(rj+l - rj - m-lp,At,) have 
the interpretation of being the transition probability densities for the particle at the phase 
point (rj, pi) at time t j  to find itself at a later time t j+ l  in the vicinity of the phase point 
(ri+l,  pi+l) under the action of force depending on the values ri, pi of the particle position 
and momentum at time ti. This situation looks perfectly natural. If we employ an alter- 
native approximation to ( l . lu ,  b) ,  for example 

(4.9) 

(4.10) 

the interpretation of the resulting Green function connecting the neighbouring times 
ti, t i+ would be the transition probability density for the particle being at the phase point 
(rj, p,) at time ti to change to (rj+ 1, pi+ 1) at time ti+ under the action of forces depending 
on the ‘probable’ phase point (ri+l, to be occupied by the particle at the later time 

The  expressions (4.6) and (4.8) were also derived by Onsager and Machlup (1953) 
without the crucial normalization factor, and in the particular case of the free Brownian 
particle. Next we shall show how to extract explicit expressions for the Green function 
from the functional representations. 

5. Approximation methods for the Green function 
The various functional integral representations of the Green function of the Fokker- 

Planck equation are not only formal devices, but their practical importance lies in the fact 
that they can be used in approximation procedures. The technique consists of employing 
a transformation of r(T), p ( ~ ) ,  which transforms part of the integral into a functionally 
known integrable form. The  rest can be treated as a perturbation. 

One particular scheme, which in certain circumstances picks up most of the Green 
function in the zeroth-order approximation, is analogous to the WKB approximation in 
quantum mechanics (see e.g. Feynman and Hibbs 1965). In  I we demonstrated this 
technique by treating the one-dimensional momentum Green function in the case where 
the force is independent of the particle position. In  the present work we wish to generalize 
the method to the three-dimensional case, Again we shall consider the external force to 
be of the form F(p, T ) .  I n  this case it is meaningful to ask for the ECPD in momentum 
space, G(p Ip’ ; tit’). Its functional integral representation over momentum functions 
obtained from the ECPD in phase space (4.4) by integrating over all r(T)l[t’, t] is 

t j+ l*  

- 112 

2A 
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From the positive definiteness of g it follows that the exponential argument in (5.1) is 
positive for every path ~ ( 7 ) .  For ‘smooth’ F(p, T )  with respect to p there exists a certain 
path through (t’, p’) and ( t ,  p) for which the exponential argument is minimized and 
therefore the exponential functional is maximized. Then most of the contribution to the 
functional integral (5.1) from the integrations over p(~)/[t’, t ]  comes from a neighbourhood 
around the minimizing path. To  find this path we apply the usual methods of the calculus 
of variations. We shall consider the case of constant g as this is the usual case for applica- 
tions. 

We have, for the required path using matrix notation, 

8 f ,  6 + p i  - F(p, T)}g{p + Bp - F(p, T ) )  d7 = 0 (5 4 
together with the conditions 

P(t7 = P’, P(t) = p.  (5.2a) 

Owing to the symmetry of the matrix g one can perform the variation either with respect 
to p or its transpose p, Thus, for the minimizing trajectory, the Euler-Lagrange equation 
is of the second order in the time ordinary vector differential equation: 

For the derivation of this equation we have taken into account the relation 8-l = 4tcTmB 
and the symmetry of B. Equatiori (5 .3 )  is in general non-linear. However, being an ordinary 
differential equation it is easier to tackle than a partial one. Let p * ( ~ )  be the solution of 
(5 .3 )  which satisfies (5 .2a) .  Introducing the transformation 

The first-order term in q(7) in (5 .5 )  vanishes, since this is the first variation of the left-hand 
side,which hasbeentaken as zero in (5.2). If the external force F is at most linearly dependent 
on p, then the calculation of the Green function with this procedure is exact. We have 
adopted the following notation: 

(5.6a) 

(5.6b) 

The  asterisk on quantities in parentheses means that they are evaluated at P(T)  = p*(~) .  
The notation 
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stands for 

It is easy to establish that the matrix C(T) defined in (5 .6~)  is symmetric. The  Jacobian 
of the functional transformation p -+ q is J(p -+ q) = 1. Furthermore, owing to (5 .2~~)  it 
follows 

q(t’) = q(t) = 0. ( 5 . 7 )  

Therefore we have for the Green function the result 

G(pjp’; tit’) 1: G,(PIP’; tit‘) r2 t 
= exp 1 - I A(r)gA(T) dr )  x 1 n det(rg-l dr) 

t’ t ’ 4  t < t  

The approximation sign in (5.8) is due to the omission of the higher powers in q. 

then consider a partition of the interval [t’, t ] :  
T o  calculate the continual Gaussian integral (5.8) we pass to the discrete form. Let US 

with 

For simplicity we shall take the partition BN isomeric, i.e. t,+l -ti = AT for j = 0, 1, 
2, ..., N -  1. Then we form the expression Go“) by replacing the integrals and symbolic 
products in (5.8) by the corresponding sums and products over the points of the partition 
gN. Denoting by S the argument of the exponential function in the functional integral (5.8), 
we have for the discrete form of the functional S the sum 

1 . v - I  

- q j ( g - 4 g h + l - q j + l ( g - ~ ~ ~ j ) q j }  (5.9) 
where in (5.9) we have taken into account the condition (5.7), which in the discrete case 
reads 

Here again we have denoted cc(ti), C(tj)  and q(tj) by clj, C, and q,. S, is easily seen to be 
symmetric with respect to q,, qj+l.  On account of this symmetry it is possible to transform 
(5.9) by a principal axis transformation, originally employed by Ab& (1954) for Gaussian 
functional integrals. We try to cast (5.9) in the form 

q, = q, = 0. 

1 N - 1  

(5.10) 
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are 3 x 3 matrices. The  A matrices are taken symmetric. I t  is possible now to rearrange 
(5.10) in the form of (5.9) and there by comparison to obtain 

A, = 2g - AT(Z1g + g q )  -F (A7)’C1 (5.1 l a )  

(5.1 lb) 

A3b3+1 = (I-ATK,)g, 6,+1A3 = g(I-ATX,) (5.1 IC) 
( j  = 1 ,2 ,  ..., n-- 1) 

The  symmetry of A, renders the equations (5.11~) consistent. From (5.11) we obtain 

b,+l = A,-’(I-ATKj)g 
+g(I- Amj)A,-’(I-   AT%,)^- 2 g + A ~ ( ~ ~ + ~ g + g i , , , )  - (AT)’C, ,~  = 0 

( j  = 1 ,2 ,  ..., N - 2 ) .  (5.12) 

We make a further substitution: 

= q, -b3+ lq ,+ l  for (j = 1,2 ,  ..., K - 2 )  
g N - 1  = q N - 1 .  (5.13) 

Again the Jacobian of the transformation q --f g is 

J (q+g)  = 1. 
Employing (5.13), we write (5.10) as 

1 N - 1 -  

S N  = - C gjAjgj. 
AT j = 1  

With the aid of (5.14) the discrete form of (5.8) becomes 

(5.14) 

Performing the integrations over g j  me obtain 

1 .v - 1 1 jZ ? 

j = 1  t’ 
Go(” = {det(r-lg)}llz [det {(AT) I1 g - l A j } ]  exp { -  1 A(T)gA(T) dr,. (5.16) 

Although the matrices g-lAj ( j  = 1, 2, ..., N -  1) do not commute in general, the value 
of the determinant of their product is independent of their order. We define 

n - 1  

D,  = Arg-lAlg-lA, . . .g-lAn-l = AT g-’Aj. (5.17) 
j = l  

What we need now for passing to the lim Go“) as N + is to find 

lim D, = D(t) = D(p, p’; t ,  t’). (5.1s) 
N+m (or Az-ta;) 

T o  this end we shall develop a differential equation for D(T) = lim D,, as n + 00. Let us 
consider an (n+ 1)-point partition of the interval Et’, T ] ,  AT being ( T -  t’)/n. Ry (5.17) we 
have the relation 

D,,, = D,g-’A,. (5.19) 
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Let us write the second identity of (5.12), as applied to the interval [t ' ,  T I ,  as follows: 

g - 'An  + ( I  - A T X ~  - ,)An - 1 - '(I - AT;, - l)g - 21 + (AT)g - '( Gng + g.,) - (AT)'g - Cn = 0 
(5.20) 

Multiplying (5.20) on the left by D, and taking into account (5.19) we can write 

Dn+l - 2 0 ,  + Dn- 1 Dng-lEng- Dn- 1g- lGn- lg  -____ +- -__ 
(AT) AT 

K Dn- 1 - a,- IDn- 1 -1 + Q,- IDn- 1 K,- IDn-' +Dn-n - Dn-1 AT 

+ D,(K,- lD , - 'Dn- lg - l~n- lg -g - lCn)  = 0. (5.21) 

Passing to the limit as AT + 0 (or, what is the same, n + CO) we obtain the following matrix 
ordinary differential equation for D(T):  

where for the derivation of (5.22) we have utilized the identity 

In  the one-dimensional case equation (5.22) is linear because there a and D commute. 
Therefore the non-linear term 

D x D - ~ B  becomes QB. 
The required D(t)  is the solution of (5.22) evaluated at T = t ,  and which satisfies the 

initial conditions 

since 
D(0) = 0 ,  D(O) = I ( 5  2 3 )  

D, = ~ T { ~ I - A T ( ~ - ~ ~ ~ ~ + X ~ ) + ( A T ) ' C ~ }  + O ,  as AT - t o  
and 

+ I ,  as AT + O .  Dz - Dl 
AT 

Actually we are interested in the determinant of D(t). One may notice that, by choosing 
a different ordering of the matrices g - l A j  for the definition of D, we would produce an 
alternative differential equation for D. However, the determinant of the new D remains 
invariant under the same initial conditions. 

From (5.16) and (5.17) we obtain the following approximate result in compact form 
for the Green function: 

t 
= [det{T?-'D(p, p'; t ,  t')}]"" exp( - A(p, p', -r)gA(p, p', T )  d r ) .  (5.24) 

t' 

This result can be taken as a zero-order approximation to G. We can further improve 
the approximation by expanding the rest of the exponential functional in (5.1) in power 
series of q and subsequently by transformation in and employ the measure in (5.15) for 
the averaging over the E's. 
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Onsager and Machlup considered the one-dimensional case of a free Brownian particle 
and produced the analogue of the exponential expression in (5.24) (which is exact when F= 0 
or at most linearly dependent on p) but they did not calculate the factor in front of the 
exponential function. This factor in the general case is not a normalization factor, but it is 
part of the probability function since it depends on p as well. 

6. Conclusion 
The  functional approach to the problem of Brownian motion seems extremely appro- 

priate for theoretical investigations. It is also useful for solving the Fokker-Planck equation 
in the case of non-linear Brownian motion. However, this approach in its present stage is 
limited to the case of infinite media. 
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